Das Zentrum
Multiple Sklerose Zentrum Dresden
Patienteninformation
Kontaktinformation
Behandlungsteam
Studienteam
Neuropsychologie
Mobilitätszentrum
Das Mobilitätszentrum
Ganganalyse
Sprunganalyse
DIERS
EMIQ
Forschungsprojekte
Neuroimmunologisches Labor
Das NIL
Neurofilament-Leichtketten Analyse
Autonomes & Neuroendokrinologisches Funktionslabor
Das ANF
Untersuchungsmethoden
MS Living Lab
Management & Science
Team Management & Science
Projekte
eHealth & Analytics
MSDS 3D
MSDS Klinik & Praxis
MS-HRS
MTRS
MS Management
Aktuelles
Neuigkeiten
Publikationen
Veranstaltungen
Adventssymposium
Multiple Sklerose 360°
Welt-MS-Tag 2021
Doktorarbeiten
Jobs
Kontakt
Podcasts & Newsletter
Newsletter
Patienten-Podcast
Ärzte-Podcast
Neurovision
Studien
Interventionelle Studien
B-SHUTTLE
Nicht-interventionelle Studien
MS PATHS
Konectom
Sprachanalyse
Deutsch
Deutsch
English (UK)
Evaluation of therapy satisfaction with cladribine tablets in patients with RMS: Final results of the non-interventional study CLEVER
MS Treatments
Jahr
Publikationsjahr
2024
Autoren
Autorenliste der Publikation
Ziemssen T, Posevitz-Fejfár A, Chudecka A, Cepek L, Reifschneider G, Grothe C, Richter J, Wagner T, Müller B, Penner IK.
Verlag
Publisher-Information
Mult Scler Relat Disord. 2024 Aug 10;90:105812.
Link
Zur Publikation (externer Server)
https://doi.org/10.1016/j.msard.2024.105812
Tags
Forschungsthemen
Multiple Sklerose
MS Behandlung
MSZ
Treatments
2024
MS brain health quality standards: a survey on the reality in clinical practice in Germany
Multiple Sclerosis
Jahr
2024
Best supportive care for patients with primary progressive multiple sclerosis (PPMS) in Germany prior to ocrelizumab treatment: Final results from the RETRO PPMS study
MS Treatments
Jahr
2024
Harmonized Data Quality Indicators Maintain Data Quality in Long-Term Safety Studies Using Multiple Sclerosis Registries/Data Sources: Experience from the CLARION Study
Multiple Sclerosis
Jahr
2024
Eculizumab Use in Neuromyelitis Optica Spectrum Disorders
MS Treatments
Jahr
2024
Higher effect sizes for the detection of accelerated brain volume loss and disability progression in multiple sclerosis using deep-learning
MASC
Jahr
2024